Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Phys Ther ; 103(2)2023 02 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2295167

RESUMEN

OBJECTIVE: The objectives of this study were to evaluate neuromuscular recruitment and efficiency in participants who recovered from COVID-19 and assess the association between neuromuscular efficiency and symptom-limited aerobic exercise capacity. METHODS: Participants who recovered from mild (n = 31) and severe (n = 17) COVID-19 were evaluated and compared with a reference group (n = 15). Participants underwent symptom-limited ergometer exercise testing with simultaneous electromyography evaluation after a 4-week recovery period. Activation of muscle fiber types IIa and IIb and neuromuscular efficiency (watts/percentage of root-mean-square obtained at the maximum effort) were determined from electromyography of the right vastus lateralis. RESULTS: Participants who had recovered from severe COVID-19 had lower power output and higher neuromuscular activity than the reference group and those who had recovered from mild COVID-19. Type IIa and IIb fibers were activated at a lower power output in participants who had recovered from severe COVID-19 than in the reference group and those who had recovered from mild COVID-19, with large effect sizes (0.40 for type IIa and 0.48 for type IIb). Neuromuscular efficiency was lower in participants who had recovered from severe COVID-19 than in the reference group and those who had recovered from mild COVID-19, with a large effect size (0.45). Neuromuscular efficiency showed a correlation with symptom-limited aerobic exercise capacity (r = 0.83). No differences were observed between participants who had recovered from mild COVID-19 and the reference group for any variables. CONCLUSION: This physiological observational study supports the notion that more severe COVID-19 symptoms at disease onset appear to correspondingly impair neuromuscular efficiency in survivors over a short time frame of 4 weeks after recovery, potentially contributing to reduced cardiorespiratory capacity. Further studies are needed to replicate and extend these findings with respect to their clinical implications for assessment/evaluation and interventions. IMPACT: After 4 weeks of recovery, neuromuscular impairment is particularly evident in severe cases; this problem may contribute to reduced cardiopulmonary exercise capacity.


Asunto(s)
COVID-19 , Tolerancia al Ejercicio , Humanos , Ejercicio Físico/fisiología , Electromiografía , Gravedad del Paciente
2.
J Electromyogr Kinesiol ; 59: 102567, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: covidwho-1260783

RESUMEN

INTRODUCTION: A huge number of COVID-19 patients should be referred to rehabilitation programmes. Individualizing the exercise intensity by metabolic response provide good physiological results. The aim of this study was to investigate the validity of EMG as a non-invasive determinant of the anaerobic threshold and respiratory compensation point, for more precise exercise intensity prescription. METHODS: An observational cross-sectional study with 66 recovered COVID-19 patients was carried out. The patients underwent a cardiopulmonary exercise test with simultaneous assessment of muscle electromyography in vastus lateralis. EMG breakpoints were analyzed during the ramp-up protocol. The first and second EMG breakpoints were used for anaerobic threshold and respiratory compensation point determination. RESULTS: EMG and gas exchange analysis presented strong correlation in anaerobic threshold (r = 0.97, p < 0.0001) and respiratory compensation point detection (r = 0.99, p < 0.0001) detection. Bland-Altman analysis demonstrated a bias = -4.7 W (SD = 6.2 W, limits of agreement = -16.9 to 7.6) for anaerobic threshold detection in EMG compared to gas exchange analysis. In respiratory compensation point detection, Bland-Altman analysis demonstrated a bias = -2.1 W (SD = 4.5 W, limits of agreement = -10.9 to 6.6) in EMG compared to gas exchange analysis. EMG demonstrated a small effect size compared to gas exchange analysis in oxygen uptake and power output at anaerobic threshold and respiratory compensation point detection. CONCLUSIONS: EMG analysis detects anaerobic threshold and respiratory compensation point without clinical significant difference than gas exchange analysis (gold standard method) in recovered COVID-19 patients.


Asunto(s)
Umbral Anaerobio , COVID-19 , Estudios Transversales , Prueba de Esfuerzo , Humanos , Músculo Esquelético , Consumo de Oxígeno , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA